The fastest way down

Queen Dido's problem

Zenodorus 200BC, Pappus 300AD, Steiner 1841

Queen Dido's Problem

Queen Dido's Problem

Galileo's Scholium Problem

Cycloid

$$\begin{aligned}
 x &= r(\theta - \sin \theta) \\
 y &= r(1 - \cos \theta)
 \end{aligned}$$

- First studied by Nicholas of Cusa and Charles Bouvelles
- Galileo called it a cycloid and tried to find the area of an arc. Area found by G.P. de Roberval, also Toricelli
- Length of arc found by Christopher Wren

Area of Cycloid

- Roberval and Toricelli
- Cavalieri's Principle

Visual Calculus by Mamikon

 The area of a tangent sweep is equal to the area of its tangent cluster, regardless of the shape of the original curve.

Length of cycloid

Tautochrone

Proposed by Pascal, solved by Huygens

This diagram and some others are from Wikipedia

Tautochrone

For simple harmonic motion

$$s'' = -k^2 s$$
 $s = A \sin kt$ $T = 2\pi/k$

Virtual gravity constraint

$$g\cos\frac{\theta}{2} = k^2s$$
 $\frac{g}{2}\sin\frac{\theta}{2}d\theta = -k^2ds$

What happens with the cycloid

$$ds = -4r\sin\frac{\theta}{2}d\frac{\theta}{2} \qquad \longrightarrow \qquad k = \sqrt{\frac{g}{4r}}$$

 Proposed + solved by Johann Bernoulli in 1696 using Fermat's principal of least time for light.

 Also Leibniz, l'Hôpital, Jakob Bernoulli, and Newton

Fastest path can be split into sub-parts – dynamic optimisation

Can split into parts in a number of ways:

Solution using Wren's involute again.

$$v = \sqrt{2gh} \qquad h = 2r\cos^2(\theta/2)$$

$$\frac{(d+x)\cos(\theta/2)}{\sqrt{2gx\cos^2(\theta/2)}} \cdot \frac{d\theta}{2} \qquad \frac{d+x}{\sqrt{x}} \qquad \frac{r}{\sqrt{x}} + \sqrt{x}$$

$$x = d$$

Path of light

 θ_2

Snell's Law (1621)

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\mu_2}{\mu_1}$$

$$\sin \theta_2 \qquad v_2 \qquad \mu_1$$

Fermats Principle

- The principle of least time in optics the light from one point to another follows the path of least time. (Fermat 1662)
- Hero of Alexandria noticed it first for reflections, it was then extended for refraction by Alhacen in 1021.
- But Newton assumed light went faster in glass rather than slower.

Solution using Fermat's principle and horizontal slices

$$v = \sqrt{2gh}$$

$$\frac{\sin\phi}{v} = K$$
 $\frac{\sin\phi}{\sqrt{-2gy}} = \frac{1}{\sqrt{2gD}}$

For cycloid

$$\frac{\cos(\theta/2)}{\sqrt{2g \cdot 2r \cos^2(\theta/2)}} = \frac{1}{\sqrt{4gr}}$$

Principle of last action

- Solutions of physical problems with no dissipation involve stationary solutions of the integral of the Lagrangian which is the Kinetic energy minus the potential energy.
- A global optimisation problem

Euler-Lagrange Equation

- A central equation in the Calculus of Variations. Devised in the 1750s.
- Turns the least action global optimisation problem into a differential equation.
- Under fairly general conditions a stationary condition is satisfied at each point of a solution, except if the solution goes along a boundary.

Euler-Lagrange Equation

$$J = \int_a^b L(x, f(x), f'(x)) dx$$
$$f(a) = c, f(b) = d$$

$$g_{\epsilon}(x) = f(x) + \epsilon \eta(x)$$
 $\eta(a) = \eta(b) = 0$

$$J(\epsilon) = \int_{a}^{b} L(x, g_{\epsilon}(x), g_{\epsilon}'(x)) dx$$

$$\frac{\mathrm{d}J}{\mathrm{d}\varepsilon} = \int_{-a}^{b} \frac{\mathrm{d}L}{\mathrm{d}\epsilon}(x, g_{\varepsilon}(x), g'_{\varepsilon}(x)) \, dx$$

$$\frac{\mathrm{d}J}{\mathrm{d}\epsilon} = \int_{a}^{b} \left[\eta(x) \frac{\partial L}{\partial g_{\epsilon}} + \eta'(x) \frac{\partial L}{\partial g'_{\epsilon}} \right] dx$$

Stationary

$$J'(0) = \int_a^b \left[\eta(x) \frac{\partial L}{\partial f} + \eta'(x) \frac{\partial L}{\partial f'} \right] dx = 0$$

$$0 = \int_{a}^{b} \left[\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right] \eta(x) dx + \left[\eta(x) \frac{\partial L}{\partial f'} \right]_{a}^{b}$$

$$0 = \int_{a}^{b} \left[\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right] \eta(x) dx$$

The Euler-Lagrange equation

$$0 = \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'}$$

$$\frac{\delta J}{\delta y} = L_y - \frac{d}{dt} L_{y'}$$

Vertical slices + E-L equation

$$\int_{p_1}^{p_2} \frac{\sqrt{1+y'^2}}{\sqrt{2gy}} dx$$

$$\frac{1}{\sqrt{1+y'^2}\sqrt{2gy}} = C$$

Via Beltrami identity when no dependence on x

$$L - f' \frac{\partial L}{\partial f'} = C$$

Lavrentiev phenomenon

- Hilbert first to give good conditions for E-L to give a stationary solution.
- Convex area, L positive C³, homogenous in the deriviatives → countable sections of paths that are solutions of E-L or go along boundary
- Stationary path not solution for instance

$$L(t, x, x') = (x^3 - t)^2 x'^6$$
$$x(0) = 0, \ x(1) = 1$$

Where is it now?

- An ancient problem which has developed over the ages. Queen Dido's problem.
 Brachistochrone, Tautochrone.
- The basis of modern mechanics. Euler-Lagrange Equation. Hamiltonians.
 Statistical mechanics
- Still under active development. Noethers theorem. Quantum mechanics. Measurement theory?

Noether's Theorem

Any symmetry of the action implies a conservation law

Extreme Physical Information

 John Archibald Wheeler: All things physical are information-theoretic in origin and this is a participatory universe... Observer participancy gives rise to information; and information gives rise to physics.

Cramér-Rao inequalty

- Fisher Information measures the information a random variable carries about an unknown parameter.
- The variance of any unbiased estimator is at least as high as the inverse of the Fisher information

$$\operatorname{E}\left[\hat{\theta}(X) - \theta\right] = \int \left[\hat{\theta}(X) - \theta\right] \cdot f(X; \theta) \, dx = 0$$

$$\frac{\partial}{\partial \theta} \mathbf{E} \left[\hat{\theta}(X) - \theta \right] = \int \left(\hat{\theta} - \theta \right) \frac{\partial f}{\partial \theta} \, dx - \int f \, dx = 0$$

$$\int \left(\left(\hat{\theta} - \theta \right) \sqrt{f} \right) \left(\sqrt{f} \, \frac{\partial \ln f}{\partial \theta} \right) \, dx = 1$$

$$\left[\int \left(\hat{\theta} - \theta \right)^2 f \, dx \right] \cdot \left| \int \left(\frac{\partial \ln f}{\partial \theta} \right)^2 f \, dx \right| \ge 1$$